

Durability of artificial grass after accelerated aging

LimeGreen Play and LimeGreen Landscape product

Report SGS INTRON B.V.

Status: Date: Document number: Final report 12 May 2023 A137310/R20231205

WHEN YOU NEED TO BE SURE

SGS INTRON B.V. A137310/R20231205 Final report

Colophon

Customer:

LimeGreen Holding B.V. attn de heer J. Eppingbroek Koningslinde 7 7131 MP LICHTENVOORDE Offer: A137310/O20221353 Purchase order: Opdrachtbevestiging

Order taker: SGS INTRON B.V. Telephone number: +31882145290

+31653725899

Mobile number:

Author: ing. H.J.M.A. Creuwels Signature:

Date: 12 May 2023 Email address: jasper@golimegreen.com

Date: 3 May 2022 Date: 28 juni 2022

Contact: Huub Creuwels Email address: huub.creuwels@sgs.com

Authorizer: dr. U. Hofstra Signature:

Reason of change:

Disclaimer

Unless otherwise agreed, orders are executed in accordance with the latest version of the SGS INTRON B.V. General Conditions. Upon simple request the conditions will again be sent to you. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the company's findings at the time of its intervention only and within the limits of the client's instructions, if any. SGS INTRON B.V.'s sole responsibility is to its client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

© SGS INTRON B.V.

Contents

Colophon	. 2
Summary	. 4
1. Preface	. 5
2. Products specification	. 5
3. Test conditions	. 7
4. Results	. 8
4.1. Dimensions and color of the fibers before and after accelerated aging	. 8
4.1.1 LimeGreen Play	. 8
4.1.2 LimeGreen Landscape	10
4.2. Polymer properties after aging	14
4.2.1 Impact of aging on Melt Mass-Flow Rate (MFR)	14
4.2.2 Impact of aging on heat to polymer by Differential Scanning Calorimetry (DSC)	15
5. Conclusions	17
Appendix 1. Report RE43685-A	18

Summary

LimeGreen Holding B.V. is a producer of artificial grass and its key value is ONE-DNA. ONE-DNA means that its products are produced from a single type of polymer: polyethylene (PE). In most common artificial grass systems multiple polymers are used in the final product e.g. also a latex backing.

In addition to a single polymer composition, the durability of the artificial grass products is also an issue for the circularity of the product. For best circularity properties the polymer properties would remain unchanged in aging. To get information about long-term the durability of the artificial grass products, accelerated weathering tests can be performed. LimeGreen has commissioned SGS as an independent testing and certification institute to test the single polymer composition of the LimeGreen products Play and Landscape for durability.

Goal

Determine effect of aging on two types of the LimeGreen products Play and Landscape for durability by testing of the properties at start and after accelerated adding by weathering and UV-radiation for 2500 and 5000 hours. With the results information were obtained about the long-term stability of the products. 2500 hours of aging based on the tested weathering condition, corresponds to approx. 10 years outdoor exposure. Since the service lifetime of the LimeGreen products Play and Landscape is 10 years, the results of the accelerated aging of 2500 hours (corresponding to 10 years outdoor exhibition) durability of the products can be assessed. The 5000 hours of aging corresponds to approx. 25 years of outdoor exposure.

Executed work

The influence on the LimeGreen products Play and Landscape by accelerated aging is tested after weathering (by UV-radiation, increasing temperature and water spraying) at fixed time-intervals. The test was performed after 2500 hours and 5000 hours and the product properties were compared to the properties at start of the original product.

After each interval a piece of the product was cut out of the original sample for testing. The remaining sample was being tested for the additional aging time. The properties of the fibres: length, diameter and colour were analysed. The specimens of both LimeGreen products (mix of backing and fibres) were analysed for Melt Flow Index (MFI) and Differential Scanning Calorimetry (DSC) for polymer assessment.

Conclusion

For the tested properties of the LimeGreen type Play and Landscape, only a small change in Melt Mass-Flow Rate (MFR) is observed.

The regular service lifetime of LimeGreen products is 10 years. Based on this service-life time only small decrease in Melt Mass-Flow Index will be present in both products after 10 years of outside exposure. For all other tested properties, no significant change is observed

Property∞	LimeGreen¤				
22		Play∞	Landscape¤		
Fibre¤	12		n		
Length≖	¤	\checkmark	□ ✓		
Thickness¤	¤	√	∞ ✓		
Colour≖	¤	√	∞ ✓		
Polymer∞		n	2		
$Melt \cdot Mass\text{-}Flow \cdot Rate \cdot (MFR)^{\underline{u}}$		() ₂	<u></u> Ω		
Melting∙Temperature¤	¤	√	∞ ✓		
Enthalpy of Melt and Crystallization	n	✓	□ ✓		

Effect of aging on fibre and polymer properties of the LimeGreen products

1. Preface

LimeGreen Holding B.V. is a producer of artificial grass and its key value is ONE-DNA. ONE-DNA means that its products are produced from a single type of polymer: polyethylene (PE).

In most common artificial grass systems multiple polymers are used in the final product e.g. also a latex backing.

The key difference here becomes prominent in the end-of-life procedure. The only way to maintain high molecular weight and strong characteristics is to separate different polymers at this stage. When polymer blends are mechanically recirculated, they enter a lower value stream.

Limegreen envisions its products to be reused in high value applications and is enabling this via ONE-DNA. This process of maintaining high value is in concurrence with the EU sustainability strategy for 2030 and other EU sustainability goals.

In addition to a single polymer composition, the durability of the artificial grass products is also an issue for the circularity of the product. For best circularity properties the polymer properties would remain unchanged in aging. To get information about long-term durability of the artificial grass products, accelerated weathering tests can be performed.

LimeGreen has commissioned SGS as an independent testing and certification institute to test the single polymer composition of the LimeGreen products Landscape and Play for durability.

Since there are no specific test methods for assessment for artificial grass for playgrounds and landscape on durability, the test methods were chosen that resemble the aging and the qualification of the properties best. For aging the European test method EN 1297 (Method for artificial aging by long term exposure to the combination of UV radiation, elevated temperature and water) was used. For quantification of the properties of the fibers the Fifa Test method 25¹ is used.

2. Products specification

The samples of artificial grass delivered by LimeGreen for durability testing were:

- LimeGreen Play
- LimeGreen Landscape

The LimeGreen Play consists of only one type of fiber for every lurch. The fiber is fibrillated and has one green color (RAL nr. 6025).

Picture 1. Build-up of the artificial grass fibers LimeGreen Play

¹ FIFA Programme for Football Turf, Test Manual I – test methods, October 2015 edition v3.4 01.02.2022

SGS INTRON B.V. A137310/R20231205 Final report

One lurch of the LimeGreen Landscape grass is build-up of a cluster of 20 fibers, all monofilaments per lurch. The 20 fibers of each lurch consist of 6 different types of fiber. Varying in color and shape.

Picture 2. Build-up of the artificial grass fibers LimeGreen Landscape

The composition of one lurch is listed in the table below:

Number of fibres per lurch	Colour	Shape	RAL-code
3	Highly light green	slightly curled	6017
3	Light green	straight	6011
3	Moderately green	straight	6025
3	Dark green	slightly curled	6002
4	Moderately green	curled	6025
4	Brown	curled	8001

3. Test conditions

For weathering of artificial grass, no harmonised standards are present to give information on the long-term behaviour of the product. However, there are harmonised standards for artificial ageing for flexible sheets for waterproofing. This testing is used for bitumen, plastic, and rubber sheet products.

In the test method (EN 1297) the product is exposed for long term to the combination of UV radiation, elevated temperature, and water.

The test method was used to determine the durability of the two types of artificial LimeGreen grass products.

From the original delivered LimeGreen grass products test specimens were cut to fit in the racks in the test chamber.

The test specimens were exposed to the aging cycles in the table below.

Exposure cycle	Specificatiën
UV-radiation	Fluorescent UV lights of type I (340 nm) or UV light combination with
	average UV-irradiation on the specimen surface of $45 \pm 5 \text{ W/m}^2$ in
	wavelength range λ ≥ 300 nm (EN ISO 4892-3)
Water	Demi water with a maximum conductivity of 500μ S/m, 25 ± 5 °C.
Spray mechanism	Spray nozzles with a flow rate of 10 ± 3 l/min and per m ² of specimen
	surface
Duration	360 min consisting of 300 min dry period followed by 60 min spray
	period. During the wet period the light source is turned off.
Temperature	During the dry period the temperature in the test chamber is $60 \pm 3 \degree C$,
	this temperature must be reached within 30 min. in the dry period.
	During the spray period the temperature is switched off.
Number of cycles	5 each of 1000 hours
Total UV exposure	5000 u, equals approx. 800 MJ/m ² UV radiation load.

After 2.5 cycles (T=1; 2,500 hours) and after 5 cycles (T=2; 5,000 hours) the following properties of the fibers were rated against the original LimeGreen grass product without exposure (T=0; 0 hours):

- Colour change.
- Change in fibre thickness.
- Change in fibre length.

A part of the complete test specimen was analyzed for changes in Melt Mass Flow Rate (MFR) and melting enthalpy by Differential Scanning Calorimetry (DSC).

4. Results

To get information about possible change in fibre properties the length and thickness were measured at:

- T=0 (0 hours of exposure),
- T=1 (2500 hours of exposure)
- T=2 (5000 hours of exposure.

4.1. Dimensions and color of the fibers before and after accelerated aging

4.1.1 LimeGreen Play

The dimensions length and thickness of the fibres of the LimeGreen Play type were measured according to the picture below:

Picture 3. Artificial grass fiber LimeGreen Play at T=0

The characteristics of the measurement of this fibre is:

- Thickness in the middle (cross=-section/diameter): 119 μ m.
- Overall thickness: 229 µm.
- Total length: 1422 µm.

In table 1 the test results of the characteristics of the LimeGreen Play fibre is presented. All measurements were done in three-fold.

	Property						
Exposure	Thickness (µm)	Overall thickness (µm)	Total length (µm)				
	119	229	1422				
0 hours (T=0)	126	185	1420				
	127	219	1407				
Average	124	211	1416				
	110	138	1339				
2500 hours (T=1)	105	155	1409				
	108	158	1298				
Average	108	150	1349				
	109	254	1425				
5000 hours (T=2)	102	163	1191				
	102	170	1265				
Average	104	196	1294				
Change (%)	16	29	9				

Table 1: Results of the fibre characteristics of LimeGreen Play before and after aging

The largest change is observed for the overall thickness of the fibre. The deviation of the measurement for this property is higher than the measured difference.

We conclude that no significant change in this fibre property was observed after 5000 hours of exposure.

SGS INTRON B.V. A137310/R20231205 Final report

4.1.2 LimeGreen Landscape

Since the LimeGreen Landscape product consists of different numbers and types of fibres per lurch, the measurements was adjusted to the fibre type.

In the following pictures the way of measurement I shown.

Picture 4: Highly light green, slightly curled, RAL nr.6017

Picture 5: Light green, straight, RAL nr.6011

Picture 6: Moderate green, straight, RAL nr.6025

Picture 7: Dark green, slightly curled, RAL nr.6002

Picture 8: Moderate green, curled, RAL nr.6025

Picture 9: Brown, curled, RAL nr.8001

		Fibre type		Fibre type			Fibre type		
	3-fibre m	onofilament Darkgreen li	ight curl	3-fibre mo	onofilament moderate gre	een straight	4-fibre monofilament moderate green curled		
		Property			Property			Property	
Exposure	Thickness (µm)	Overall thickness (µm)	Total length (µm)	Thickness (µm)	Overall thickness (µm)	Total length (µm)	Thickness (µm)	Overall thickness (µm)	Total length (µm)
0 hours (T=0)	146	169	734	250	293	835	109	132	692
Colour (RAL nr.)	6002			6025			6026		
2500 hours (T=1)	165	175	773	269	295	870	128	138	642
Colour (RAL nr.)		6002		6025			6025		
5000 hours (T=2)	164	166	750	267	285	891	110	122	695
Colour (RAL nr.)	6002			6025			6025		
Greatest change (%)	12	5	5	7	3	6	15	12	8

Table 2a: Results of the fibre characteristics of the LimeGreen Landscape product before and after aging

Table 2b: Results of the fibre characteristics of the LimeGreen Landscape product before and after aging

		Fibre type		Fibre type			Fibre type			
	3-fibre monofil	ament highly light green	lightly curled	3-fibre	monofilament light greer	n straight	4-fibre m	4-fibre monofilament moderate brown curled		
		Property			Property			Property		
Exposure	Thickness (µm)	Overall thickness (µm)	Total length (µm)	Thickness (µm)	Overall thickness (µm)	Total length (µm)	Thickness (µm)	Overall thickness (µm)	Total length (µm)	
0 hours (T=0)	157	172	739	246	277	815	116	124	670	
Colour (RAL nr.)	6017			6011			8001			
2500 hours (T=1)	156	181	785	258	272	897	126	133	680	
Colour (RAL nr.)	6018			6011			8001			
5000 hours (T=2)	155	179	780	247	258	987	122	138	634	
Colour (RAL nr.)	6018			6011			8001			
Greatest change (%)	1	5	6	5	7	17	8	10	7	

Based on the data in table 2 no significant change in fibre properties and colour is observed after 5000 hours of exposure.

4.2. Polymer properties after aging

The Melt Mass-Flow Rate (MFR) is a method to assess the molecular weight of polymeric materials. The chain scission reactions, one of the most important outcomes of degradation, produce smaller polymer molecules. During the aging of the polymer, a cross-linking reaction would lead to a decrease in the MFR value, while chain scission reaction would result in an increase of the MFR value.

4.2.1 Impact of aging on Melt Mass-Flow Rate (MFR)

The melt flow index of a polymer gives an indication of viscosity of the melt and **behaviour** during production eg. extrusion, or fiber spinning. Where this value is correlated to zero-shear viscosity it furthermore gives indication of chain length and contamination and thus the quality of the feedstock. Melt flow index was measured conform ISO 1133-1 with a load of 2.16kg at 190°C, table **4**.

	Melt Ma	ss-Flow Rate (MFR)	Decrease (%)		
	0 hours (T=0)	2500 hours (T=1) 5000 hours (T=2)		2500 hours (T=1)	5000 hours (T=2)
LimeGreen Play	3,32	2,60	2,20	22	34
Limegreen Landscape	3,01	2,35	1,82	22	40

Table 4: Results of change in Melt Mass-Flow Rate (MFR) after aging

Both Lime Green products show a slight decrease in Melt Mass-Flow Rate (MFR) after 2500 hours aging. The decrease of the Melt Mass-Flow Rate (MFR) after 5000 hours aging of the LimeGreen products is considerable.

The LimeGreen Landscape product has at start a lower MFR than the LimeGreen Play product. The LimeGreen Landscape polymer has slightly more cross-linked polymers than the LimeGreen Play polymer, based on the curled fibres used in the LimeGreen Landscape product.

Chart 1: Influence of aging on Melt Mass-Flow Rate (MFR).

The regular service life time of LimeGreen products is 10 years. Based on this service-life time only slight decrease in Melt Mass-Flow Index will be present in both products after 10 years of outside exposure.

4.2.2 Impact of aging on heat to polymer by Differential Scanning Calorimetry (DSC)

In differential scanning calorimetry energy is transfused into the sample in the form of heat. In phase transitions the sample has a threshold of energy required to enter the next phase. This event is measured, and a correlation to the phase-transition temperature is found. Furthermore, during the melt of the polymer the crystallinity of the sample can be calculated from the phase-transition enthalpy. Polyethylene of high crystallinity has higher tensile strength, impact strength, has higher barrier properties, is less ductile and more thermally stable.

The glass-transition temperature of polyethylene is negative and cannot be measured with conventional DSC. The following parameters were measured:

- Melting temperature (Tm) in degrees Celsius in the first and second heating cycles.
- Enthalpy of the melt (Δ H) in joules per gram in the first and second heating cycles
- Enthalpy of crystallization (ΔH) in joules per gram.

The results of the DSC analyses on melting temperature (Tm) are presented in the table 5. The results of the DSC analyses on enthalpy of the melt (Δ H) and the enthalpy of crystallization (Δ H) are presented in the table 6.

SGS INTRON B.V. A137310/R20231205 Final report

Table 5: Differential Scanning Calorimetry (DSC) of the melting temperature after aging of the LimeGreen products

		Differential Scanning Calorimetry (DSC) Melting Temperature						
Product type	0 hours (T=0)		2500 hou	urs (T=1)	5000 hours (T=2)			
	Tm [°C] 1st	Tm [°C] 2nd	Tm [°C] 1st	Tm [°C] 2nd	Tm [°C] 1st	Tm [°C] 2nd		
LimeGreen Play	120,7	121,6	121,2	121,8	120,0	121,2		
Limegreen Landscape	118,9	111,5 / 121,6	113,1 / 126,4	110,6 / 125,9	114,7	111,5 / 122,0		

No significant change in melting temperatures is observed for the LimeGreen products after aging. For the LimeGreen Landscape type 2 melting temperatures are observed in the 2nd heating. The two different melting temperatures refer to the straight and curled fibres in the LimeGreen Landscape product.

Table 6: Differential Scanning Calorimetry (DSC) of on enthalpy of the melt and crystallization after aging of the LimeGreen products

		Differential Scanning Calorimetry (DSC) Enthalpy of the melt and crystallization							
Product type	0 hours (T0)			2500 hours (T=1)			5000 hours (T=2)		
	∆H [J/g] 1st	∆H [J/g] 2nd	∆H [J/g] crystall	∆H [J/g] 1st	∆H [J/g] 1st	∆H [J/g] crystall	∆H [J/g] 1st	∆H [J/g] 1st	∆H [J/g] crystall
LimeGreen Play	136,6	130,4	124,9	121,2	121,8	128,0	151,8	135,9	131,3
Limegreen Landscape	113,2	108,4	104,8	121,7	116,4	113,9	114,7	115,2	109,4

For the LimeGreen Play product a small increase in enthalpy of the melt and crystallization after aging is observed.

5. Conclusions

No significant change in fibre property is observed after 5000 hours of exposure.

Both LimeGreen products show a slight decrease in Melt Flow Index (MFI) after aging during 5000 hours. The Melt Mass-Flow Rate (MFR) of the LimeGreen Landscape product is at start lower than the LimeGreen Play product. The LimeGreen Landscape polymer has slightly more cross-linked polymers than the LimeGreen Play polymer

For both LimeGreen products a decrease in MFR is observed after aging for 5000 hours. The decrease shows that some cross-linking reactions occur at the aging.

No significant change in melting temperature is observed for the LimeGreen products after aging.

For the LimeGreen Landscape type 2 melting temperatures are observed in the 2nd heating, due to the straight and curled fibres used.

For the LimeGreen Play product a small increase in enthalpy of the melt and crystallization after aging for 5000 hours is observed.

Property	LimeGreen				
	Play	Landscape			
Fibre					
Length	\checkmark	\checkmark			
Thickness	\checkmark	✓			
Colour	\checkmark	✓			
Polymer					
Melt Mass-Flow Rate (MFR)	•				
Melting Temperature	\checkmark	✓			
Enthalpy of Melt and Crystallization	~	✓			

Effect of aging on fibre and polymer properties of the LimeGreen products

For the tested properties the LimeGreen type Play and Landscape, only a small change in Melt Mass-Flow Rate (MFR) is expected after the regular service lifetime of 10 years.

The regular service lifetime of LimeGreen products is 10 years. Based on this service lifetime only small decrease in Melt Mass-Flow Index will be present in both products after 10 years of outside exposure. For all other tested properties, no significant change is observed

SGS INTRON B.V. A137310/R20231205 Final report

Appendix 1. Report RE43685-A

Intertek Polychemlab Koolwaterstofstraat 1 6161 RA Geleen The Netherlands

Telephone: +31 (0)88 126 8888

www.intertek.com

TEST REPORT – RE43685-A DSC AND MFR

RECALL OF RESULTS MVR : LIMS NO. 23399733

SGS Intron BV Attn. Mr. Huub Creuwels Dr. Nolenslaan 126 6130 PD Sittard Netherlands

DATE May 11, 2023

May 11, 2023

Dear Mr. Creuwels,

Hereby we present to you the results of the laboratory study, which was carried out in accordance with your request (SO43685). This report replaces the former report with no. RE43685. The report RE43685 is not valid. Revision; caused by a wrong calculation of MVR results of sample 22.3374-4

The general conditions of delivery for Intertek Polychemlab B.V., located in Geleen, the Netherlands, are applicable. These conditions are an integral part of all research carried out and the services and consultations provided; where appropriate, can be expanded upon by specific client agreement.

Samples of unknown origin can only be checked for plausibility to a limited extent. Results of the examination of these samples only relate to the samples as received by Intertek. Intertek is not responsible for the data supplied by the client which may affect the validity of the

Interfek is not responsible for the data supplied by the client which may affect the validity of the analysis results.

Information on potential measurement uncertainty can be provided where requested. Any opinions and/or interpretations in this report fall outside the scope of the ISO/IEC 17025 accreditation.

We trust that this information will meet your approval.

Yours sincerely,

ugusti

Frank Augustin Application Specialist

May 11, 2023

1 SAMPLES

The samples were packed in unsealed plastic bags and coded by the customer as displayed in table 1. The samples were also each coded by Intertek with a unique Intertek LIMS number.

	···· [···· · · · · · · · · ·			
NO.	INTERTEK SAMPLE DESCRIPTION	CUSTOMER SAMPLE IDENTIFICATION	DATE RECEIVED	INTERTEK LIMS NUMBER
1	Piece of artificial grass	22.3374-3	14-04-2023	23399732
2	Piece of artificial grass	22.3374-4	14-04-2023	23399733
3	Piece of artificial grass	22.3374-5	14-04-2023	23399734
4	Piece of artificial grass	22.3374-6	14-04-2023	23399735
5	Piece of artificial grass	22.3374-7	14-04-2023	23399736
6	Piece of artificial grass	22.3374-8	14-04-2023	23399737

Table 1: Description of the samples of SO43685.

2 METHODS AND HARDWARE

DIFFERENTIAL SCANNING CALORIMETRY (DSC) - ISO 11357-3 (Q)

DSC 1 – 204428 – Mettler Toledo Equipment Type of DSC: Heat-flux DSC Auto sampler <Auto sampler> Crucible Aluminium 40 μL <pin> Purge gas Nitrogen (≥ 99.997 vol%) Purge gas flow 50 ml/min Test conditions ISO11357-3:2018 Plastics – Differential scanning calorimetry (DSC) – Part 3: Determination of temperature and enthalpy of melting and crystallization Temperature range 0°C to 210°C Heating/cooling rate 10°C/min

Remarks –

May 11, 2023

MELT MASS-FLOW RATE (MFR) - ISO 1133-1 (Q)

Equipment A-flow extrusion plastometer of Zwick Roell

Test conditions ISO 1133-1:2011 Plastics – Determination of the melt mass-flow rate (MFR) and melt volume-flow rate (MVR) of thermoplastics – Part 1: Standard method

Method A Temperature – Load 190°C – 2.16 kg

Remarks

_

(Q) marked method is ISO 17025 (Dutch Accreditation Council RvA) accredited.

(RvA Registration number: L377: TESTING)

May 11, 2023

3 RESULTS

The summary of the results is displayed in table 2 till 7 (and the detailed results are available in the appendices).

Table 2: Results sample 1.

NO.	1			
CUSTOMER SAMPLE DESCRIPTION	22.3374-3			
INTERTEK LIMS NUMBER	23399732			
DIFFERENTIAL SCANNING CALORIMETRY (DSC) – ISO 11357-3 (Q)				
PEAK CRYSTALLIZATION TEMPERATURE	°C	71.5 / 113.2		
ENTHALPY OF CRYSTALLIZATION	J/g	124.9		
PEAK MELTING TEMPERATURE 2ND HEATING CURVE	°C	121.6		
ENTHALPY OF FUSION 2ND HEATING CURVE	J/g	130.4		
PEAK MELTING TEMPERATURE 1ST HEATING CURVE	°C	120.7		
ENTHALPY OF FUSION 1ST HEATING CURVE	J/g	136.6		
DSC GRAPH		APPENDIX I		
TEST DATE		20-Apr-23		
REMARKS				
MELT MASS-FLOW RATE (MFR) – ISO 1133-1_A (Q)	190°C – 2.16kg			
MELT VOLUME-FLOW RATE 1	cm ³ /10min	4.29		
MELT VOLUME-FLOW RATE 2	cm ³ /10min	4.29		
MELT VOLUME-FLOW RATE 3	cm ³ /10min	4.30		
MELT VOLUME-FLOW RATE AVERAGE	cm ³ /10min	4.29		
MELT VOLUME-FLOW RATE STDEV	cm ³ /10min	0.01		
MELT MASS-FLOW RATE AVERAGE	g/10min	3.32		
RAW DATA		APPENDIX VII		
TEST DATE		19-Apr-23		
REMARKS				

May 11, 2023

Table 3: Results sample 2.

NO.	2				
CUSTOMER SAMPLE DESCRIPTION	22.3374-4				
INTERTEK LIMS NUMBER	23399733				
DIFFERENTIAL SCANNING CALORIMETRY (DSC) – ISO 11357-3 (Q)					
PEAK CRYSTALLIZATION TEMPERATURE	°C	68.7 / 113.2			
ENTHALPY OF CRYSTALLIZATION	J/g	104.8			
PEAK MELTING TEMPERATURE 2ND HEATING CURVE	°C	111.5 / 121.6			
ENTHALPY OF FUSION 2ND HEATING CURVE	J/g	108.4			
PEAK MELTING TEMPERATURE 1ST HEATING CURVE	°C	118.9			
ENTHALPY OF FUSION 1ST HEATING CURVE	J/g	113.2			
DSC GRAPH		APPENDIX II			
TEST DATE		20-Apr-23			
REMARKS					
MELT MASS-FLOW RATE (MFR) – ISO 1133-1_A (Q)	190°C – 2.16kg				
MELT VOLUME-FLOW RATE 1	cm ³ /10min	3.91			
MELT VOLUME-FLOW RATE 2	cm ³ /10min	3.87			
MELT VOLUME-FLOW RATE 3	cm ³ /10min	3.90			
MELT VOLUME-FLOW RATE AVERAGE	cm ³ /10min	3.89			
MELT VOLUME-FLOW RATE STDEV	cm ³ /10min	0.02			
MELT MASS-FLOW RATE AVERAGE	g/10min	3.01			
RAW DATA		APPENDIX VII			
TEST DATE		19-Apr-23			
REMARKS					

May 11, 2023

Table 4: Results sample 3.

NO.	3			
CUSTOMER SAMPLE DESCRIPTION	22.3374-5			
INTERTEK LIMS NUMBER	23399734			
DIFFERENTIAL SCANNING CALORIMETRY (DSC) – ISO 11357-3 (Q)				
PEAK CRYSTALLIZATION TEMPERATURE	°C	72.0 / 113.2		
ENTHALPY OF CRYSTALLIZATION	J/g	128.0		
PEAK MELTING TEMPERATURE 2ND HEATING CURVE	°C	121.8		
ENTHALPY OF FUSION 2ND HEATING CURVE	J/g	134.5		
PEAK MELTING TEMPERATURE 1ST HEATING CURVE	°C	121.2		
ENTHALPY OF FUSION 1ST HEATING CURVE	J/g	143.6		
DSC GRAPH		APPENDIX III		
TEST DATE		20-Apr-23		
REMARKS				
MELT MASS-FLOW RATE (MFR) – ISO 1133-1_A (Q)	190°C – 2.16kg			
MELT VOLUME-FLOW RATE 1	cm ³ /10min	3.35		
MELT VOLUME-FLOW RATE 2	cm ³ /10min	3.36		
MELT VOLUME-FLOW RATE 3	cm ³ /10min	3.39		
MELT VOLUME-FLOW RATE AVERAGE	cm ³ /10min	3.37		
MELT VOLUME-FLOW RATE STDEV	cm ³ /10min	0.02		
MELT MASS-FLOW RATE AVERAGE	g/10min	2.60		
RAW DATA		APPENDIX VII		
TEST DATE		19-Apr-23		
REMARKS				

May 11, 2023

Table 5: Results sample 4.

NO.	4			
CUSTOMER SAMPLE DESCRIPTION				
	22.3374-6			
INTERTEK LIMS NUMBER	23399735			
DIFFERENTIAL SCANNING CALORIMETRY (DSC) – ISO 11357-3 (Q)				
PEAK CRYSTALLIZATION TEMPERATURE	°C	68.0 / 103.5 / 113.8		
ENTHALPY OF CRYSTALLIZATION	J/g	113.9		
PEAK MELTING TEMPERATURE 2ND HEATING CURVE	°C	110.6 / 125.9		
ENTHALPY OF FUSION 2ND HEATING CURVE	J/g	116.4		
PEAK MELTING TEMPERATURE 1ST HEATING CURVE	°C	113.1 / 126.4		
ENTHALPY OF FUSION 1ST HEATING CURVE	J/g	121.7		
DSC GRAPH		APPENDIX IV		
TEST DATE		20-Apr-23		
REMARKS				
MELT MASS-FLOW RATE (MFR) – ISO 1133-1_A (Q)	190°C – 2.16kg			
MELT VOLUME-FLOW RATE 1	cm ³ /10min	3.60		
MELT VOLUME-FLOW RATE 2	cm ³ /10min	3.40		
MELT VOLUME-FLOW RATE 3	cm ³ /10min	3.56		
MELT VOLUME-FLOW RATE AVERAGE	cm ³ /10min	3.52		
MELT VOLUME-FLOW RATE STDEV	cm ³ /10min	0.10		
MELT MASS-FLOW RATE AVERAGE	g/10min	2.35		
RAW DATA		APPENDIX VII		
TEST DATE		19-Apr-23		
REMARKS				

May 11, 2023

Table 6: Results sample 5.

NO.	5		
CUSTOMER SAMPLE DESCRIPTION	22.3374-7		
INTERTEK LIMS NUMBER	23399736		
DIFFERENTIAL SCANNING CALORIMETRY (DSC) – ISO 11357-3 (Q)			
PEAK CRYSTALLIZATION TEMPERATURE	°C	71.9 / 113.3	
ENTHALPY OF CRYSTALLIZATION	J/g	131.3	
PEAK MELTING TEMPERATURE 2ND HEATING CURVE	°C	121.2	
ENTHALPY OF FUSION 2ND HEATING CURVE	J/g	135.9	
PEAK MELTING TEMPERATURE 1ST HEATING CURVE	°C	120.0	
ENTHALPY OF FUSION 1ST HEATING CURVE	J/g	151.8	
DSC GRAPH		APPENDIX V	
TEST DATE		20-Apr-23	
REMARKS			
MELT MASS-FLOW RATE (MFR) – ISO 1133-1_A (Q)	190°C – 2.16kg		
MELT VOLUME-FLOW RATE 1	cm ³ /10min	2.82	
MELT VOLUME-FLOW RATE 2	cm ³ /10min	2.84	
MELT VOLUME-FLOW RATE 3	cm ³ /10min	2.82	
MELT VOLUME-FLOW RATE AVERAGE	cm ³ /10min	2.83	
MELT VOLUME-FLOW RATE STDEV	cm ³ /10min	0.01	
MELT MASS-FLOW RATE AVERAGE	g/10min	2.20	
RAW DATA		APPENDIX VII	
TEST DATE		19-Apr-23	
REMARKS			

May 11, 2023

Table 7: Results sample 6.

NO.	6				
CUSTOMER SAMPLE DESCRIPTION	22.3374-8				
INTERTEK LIMS NUMBER	23399737				
DIFFERENTIAL SCANNING CALORIMETRY (DSC) - ISO 11357-3 (Q)					
PEAK CRYSTALLIZATION TEMPERATURE	°C	68.2 / 104.2 / 115.2			
ENTHALPY OF CRYSTALLIZATION	J/g	109.4			
PEAK MELTING TEMPERATURE 2ND HEATING CURVE	°C	111.5 / 122.0			
ENTHALPY OF FUSION 2ND HEATING CURVE	J/g	115.2			
PEAK MELTING TEMPERATURE 1ST HEATING CURVE	°C	114.7			
ENTHALPY OF FUSION 1ST HEATING CURVE	J/g	122.4			
DSC GRAPH		APPENDIX VI			
TEST DATE		20-Apr-23			
REMARKS					
MELT MASS-FLOW RATE (MFR) – ISO 1133-1_A (Q)	190°C – 2.16kg				
MELT VOLUME-FLOW RATE 1	cm ³ /10min	2.41			
MELT VOLUME-FLOW RATE 2	cm ³ /10min	2.30			
MELT VOLUME-FLOW RATE 3	cm ³ /10min	2.39			
MELT VOLUME-FLOW RATE AVERAGE	cm ³ /10min	2.37			
MELT VOLUME-FLOW RATE STDEV	cm ³ /10min	0.06			
MELT MASS-FLOW RATE AVERAGE	g/10min	1.82			
RAW DATA		APPENDIX VII			
TEST DATE		19-Apr-23			
REMARKS					

May 11, 2023

APPENDIX I

Figure 1: DSC curves of sample "23399732 22.3374-3".

May 11, 2023

APPENDIX II

Figure 2: DSC curves of sample "23399733 22.3374-4".

May 11, 2023

APPENDIX III

Figure 3: DSC curves of sample "23399734 22.3374-5".

May 11, 2023

APPENDIX IV

Figure 4: DSC curves of sample "23399735 22.3374-6".

May 11, 2023

APPENDIX V

Figure 5: DSC curves of sample "23399736 22.3374-7".

May 11, 2023

APPENDIX VI

Figure 6: DSC curves of sample "23399737 22.3374-8".

May 11, 2023

APPENDIX VII

Table 8: MFR raw data of the six samples of SO43685.

MELT MASS-FLOW RATE (MFR) - ISO 1133-1_A (Q)

NO.	CUSTOMER SAMPLE DESCRIPTION	INTERTEK LIMS NUMBER	TEMP - LOAD	TEST DATE	t s	MVR cm ³ /10 min	MVR_{ave} cm ³ /10 min	m g	MFR _{ave} g/10 min
				19-Apr-23		4.29		0.1106	
1	22.3374-3	23399732	190°C – 2.16kg		20	4.29	4.29	0.1105	3.32
						4.30		0.1109	
				19-Apr-23		3.91		0.1010	
2	22.3374-4	23399733	190°C – 2.16kg		20	3.87	3.89	0.0998	3.01
						3.90		0.1006	
				19-Apr-23		3.35		0.0853	
3	22.3374-5	23399734	190°C – 2.16kg		20	3.36	3.37	0.0868	2.60
						3.39		0.0879	
				19-Apr-23		3.60		0.0798	
4	22.3374-6	23399735	190°C – 2.16kg		20	3.40	3.52	0.0758	2.35
						3.56		0.0795	
				19-Apr-23		2.82		0.0729	
5	22.3374-7	23399736	190°C – 2.16kg		20	2.84	2.83	0.0739	2.20
						2.82		0.0732	
				19-Apr-23		2.41		0.0623	
6	22.3374-8	23399737	190°C – 2.16kg		20	2.30	2.37	0.0578	1.82
						2.39		0.0622	

WWW.SGS.COM/INTRON

ABOUT SGS

We are SGS – the world's leading testing, inspection and certification company. We are recognized as the global benchmark for sustainability, quality and integrity. Our 97,000 employees operate a network of 2,650 offices and laboratories, working together to enable a better, safer and more interconnected world.

SGS INTRON B.V.

Dr. Nolenslaan 126

SGS INTRON B.V.

NL-4100 AG Culemborg

+31 (0)88 214 51 00

Venusstraat 2

P.O. Box 267

SGS NETHERLANDS

Malledijk 18 P.O. Box 200

NL-3200 AE Spijkenisse +31 (0)88 214 33 33

SGS BELGIUM

SGS House Noorderlaan 87

B-2030 Antwerpen +32 (0)3 545 44 00

P.O. Box 5187 NL-6130 PD Sittard

+31 (0)88 214 52 04